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The propagation of the optical solitons is usually governed by the nonlinear Schrödinger equations. In 

this article, the two variable  ' 1,G
G G

-expansion method is employed to construct the exact traveling 

wave solutions with parameters of two nonlinear partial differential equations (PDEs) namely, the (1+1)-
dimensional nonlinear Schrödinger-Boussinesq system and the (2+1)-dimensional hyperbolic nonlinear 
Schrödinger (HNLS) equation which describe the propagation of optical pulses in optic fibers. When the 
parameters are replaced by special values, the solitary wave solutions of these equations are found 
from the traveling waves.  
 

Key words: The two variable  ' 1,G
G G

-expansion method, nonlinear Schrödinger-Boussinesq system, 

hyperbolic nonlinear Schrödinger (HNLS) equation, exact traveling wave solutions, solitary wave solutions. 
 
 
INTRODUCTION 
 

In the recent years, investigations of exact solutions to 
nonlinear partial differential equation (PDEs) play an 
important role in the study of nonlinear physical 
phenomena. Many powerful methods have been 
presented, such as the inverse scattering method 
(Ablowitz and Clarkson, 1991), the Hirota bilinear 
transform method (Hirota, 1971), the truncated Painleve 
expansion method (Weiss et al., 1983; Kudryashov, 
1988, 1990, 1991), the Backlund transform method 
(Miura, 1978; Rogers and Shadwick, 1982), the exp-
function method (He  and  Wu,  2006;   Yusufoglu,   2008;  

Zhang, 2008; Bekir, 2009, 2010), the tanh-function 
method (Abdou 2010; Fan, 2000; Zhang and Xia, 2008; 
Yusufoglu and Bekir, 2008), the Jacobi elliptic function 
expansion method (Chen and Wang, 2005; Liu et al., 

2001; Lu, 2005), the  'G
G

-expansion method (Wang et 

al., 2008; Zhang et al., 2008; Zayed and Gepreel, 2009; 
Zayed, 2009; Bekir, 2008; Ayhan and Bekir, 2012; 
Kudryashov, 2010a, b; Aslan, 2010; Zayed, 2010;), the 

modified  'G
G

-expansion method  (Zhang  et  al.,  2011), 
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the  ' 1,G
G G

-expansion method (Li et al., 2010; Zayed 

and Abdelaziz, 2012; Zayed et al., 2012; Zayed and 
Alurrfi, 2014a, b), the Riccati equation method (Ma and 
Fuchssteiner, 1996), the bilinear method (Ma, 2011, 
2013), the transformed rational function method (Ma and 
Lee, 2009), the multiple exp-function method (Ma and 
Zhu, 2012) and so on. 

The key idea of the one variable  'G
G

-expansion 

method is that the exact solutions of nonlinear PDEs can 

be expressed by a polynomial in one variable  'G
G

 in 

which ( )G G   satisfies the second order linear 

ordinary differential equation (ODE) 

''( ) '( ) ( ) 0G G G       , where ,   are 

constants and '
d

d
 . The key idea of the two variable 

 ' 1,G
G G

-expansion method is that the exact traveling 

wave solutions of nonlinear PDEs can be expressed 

by a polynomial in two variables  'G
G

  and  1
G

 in which 

( )G G   satisfies the second order linear ODE 

''( ) ( )G G     , where   and   are constants. 

The degree of this polynomial can be determined by 
considering the homogeneous balance between the 
highest order derivatives and the nonlinear terms 
appearing in the given nonlinear PDEs. The coefficients 
of this polynomial can be obtained by solving a set of 
algebraic equations resulted from the process of using 
this method. Recently, Li et al. (2010) have applied the 

 ' 1,G
G G -expansion method and determined the exact 

solutions of the nonlinear Zakharov equations, while 
Zayed and Abdelaziz (2012), Zayed et al. (2012), and 
Zayed and Alurrfi (2014a, b), respectively have used this 
method to find the exact solutions of the nonlinear 
combined KdV-mKdV equation, the nonlinear 
Kadomtsev-Petviashvili equation, the nonlinear PDE for 
nanobioscinces and two higher order nonlinear evolution 
equations namely, the nonlinear Klein-Gordon equations 
and the nonlinear Pochhammer-Chree equations . 

The objective of this paper is to apply the two variables 

 ' 1,G
G G -expansion method obtained in Li et al. (2010), 

Zayed and Abdelaziz (2012), Zayed et al. (2012),  and 
Zayed and Alurrfi (2014a,b) to find the exact traveling 
wave solutions of the following two different nonlinear 
equations which are not yet discussed: 

 
(i) The (1+1)-dimensional Schrödinger-Boussinesq 
system (SB-system) (Kilicman and Abazari, 2012): 

 
 
 
 

2

0,

( ) 0,

t xx

tt xx xxxx xx

iu u auv

v v v b u

  

   
                                 (1) 

 

Where 0t  ,  0,x L , for some 0L  , and ,a b are 

real constants. Here, u and v are, respectively a complex-
valued and a real-valued function. 
(ii) The (2+1)-dimensional hyperbolic nonlinear 
Schrödinger (HNLS) equation (Fen, 2012): 
 

21 1
0,

2 2
y xx ttiu u u u u                                            (2) 

 
Where u(x,y,t) is a complex-valued function which 
represents the slowly varying envelope of propagation, 
x is the dimensionless variable, y is the propagation 

coordinate and  t  is the time. 

The SB-system (Equation 1) is considered as a model 
of interactions between short and intermediate long 
waves, which is derived in describing the dynamics of 
Langmuir soliton formation and interaction in a plasma 
(Makhankov, 1974) and diatomic lattice system (Yajima 
and Satsuma, 1979). The SB-system has been discussed 

in Kilicman and Abazari (2012) using the  'G
G

-expansion 

method and its exact solutions has been found. Equation 
2 can be derived from optics (Gorz and Haelterman, 
2008) and large-scale Rossby waves (Tan and Wu, 
1993). Various types of HNLS equations describing time 
and space evolutions of slowly varying envelopes have 
wide applications in various branches of physics (Tang 
and Shukla 2007; Li, 2007).  HNLS equation has been 
investigated in Fen (2012) using the theory of bifurcations 
of dynamical system and its exact solutions have been 
presented. 
 
 

DESCRIPTION OF THE TWO VARIABLE  ' 1,G
G G

-

EXPANSION METHOD 
 
Before the main steps of this method are described, the 
following remarks are needed (Li et al., 2010; Zayed and 
Abdelaziz, 2012; Zayed et al., 2012; Zayed and Alurrfi, 
2014a, b): 
 
 
Remark 1 
 
If the second order linear ODE is considered: 
 

''( ) ( ) ,G G                                                       (3) 

 

and set 
'G

G
  , 

1

G
  , then we get: 



 
 
 
 

2' , ' .                                                   (4) 

 

Where and are constants while '
d

d
 . 

 
 

Remark 2 
 

If 0  , then the general solution of Equation 3 has the 

form:  
 

1 2( ) sinh( ) cosh( ) ,G A A



                     (5) 

 

Where 1A  and 2A  are arbitrary constants. Consequently, 

we have  
 

2 2

2 2

1

( 2 ),


   
  

   


                                       (6) 

 

Where 
2 2

1 1 2A A    

 
 

Remark 3 
 

If 0  , then the general solution of Equation 3 has the 

form:  
 

1 2( ) sin( ) cos( ) ,G A A



                              (7) 

 
and hence 
 

2 2

2 2

2

( 2 ),


   
  

  


                                    (8) 

 

Where 
2 2

2 1 2A A    

 
 
Remark 4  
 

If 0  , then the general solution of Equation 3 has the 

form:  
 

2

1 22
( ) ,G A A

                                                 (9) 

 
and hence 
 

2 2

2

1 2

1
( 2 ).

2A A
  


 


                                      (10) 

 
Suppose we have the following nonlinear evolution 
equation. 
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( , , , ,...) 0,t x xxF u u u u                                          (11) 

 
Where F  is a polynomial in ( , )u x t  and its partial 

derivatives in which the highest order derivatives and 
nonlinear terms are involved. In the following, the main 

steps of the  ' 1,G
G G

-expansion method are given (Li et 

al., 2010; Zayed and Abdelaziz, 2012; Zayed et al., 2012; 
Zayed and Alurrfi, 2014a, b): 

 
 
Step 1 

 
The traveling wave transformation 

 

( , ) ( ), ,u x t u x Ct                             (12) 

 
Where C is a constant, reduces Equation 11 to an ODE 

in the form: 

 
( , ', '',...) 0,P u u u                                                 (13) 

 
Where P is a polynomial of ( )u   and its total derivatives 

with respect to . 

 
 
Step 2  

 
Assuming that the solution of Equation 13 can be 

expressed by a polynomial in the two variables    and 

  as follows: 

 

1

0

1 1

( ) ,
N N

i i

i i

i i

u a a b   

 

                              (14) 

 

Where 0 , ia a  and ( 1,2,..., )ib i N are constants to 

be determined later satisfying
2 2 0N Na b  . 

 
 
Step 3 

 
Determine the positive integer N  in Equation 14 by 

using the homogeneous balance between the highest-
order derivatives and the nonlinear terms in Equation 13. 

More precisely we define the degree of ( )u   as 

 ( )D u N  which gives rise to the degree of other 

expressions as follows: 
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,

( ).

q

q

s
q

p

q

d u
D N q

d

d u
D u Np s q N

d





 
  

 

  
     
   

                         (15) 

 

Therefore, we can get the value of  N  in Equation 14. 

 
 
Step 4 
 
Substitute Equation 14 into Equation 13 along with 
Equations 4 and 6, the left- hand side of Equation 13 can 

be converted into a polynomial in   and  , in which the 

degree of   is not longer than 1. Equating each 

coefficients of this polynomial to 0, yields a system of 
algebraic equations which can be solved by using the 
Maple or Mathematica to get the values of 

1 2, , , , ,i ia b C A A  and    where 0  . Similarly, 

substitute Equation 14 into Equation 13 along with 

Equations 4 and 8 for 0  or Equations 4 and 10 for

0  , we obtain the exact solutions of Equation 13 

expressed by hyperbolic functions, trigonometric 
functions and rational functions, respectively. 
 
 

APPLICATIONS 
 

Here, the method described earlier is applied to find the 
exact traveling wave solutions of Equations 1 and 2 
which are very important in the mathematical physics and 
have been paid attention by many researchers. 
 
 

Example 1 
 

The (1+1)-dimensional nonlinear SB-system 
(Equation 1) 
 

We start with the (1+1)-dimensional nonlinear SB-system 
(Equation 1). Assume that the solution of Equation 1 can 
be written as: 
 

( , ) ( ) ,

( , ) ( ),

iu x t U e

v x t V








                                                      (16) 

 

Where ,kx t px qt       and , , ,k p q are 

constants, 1i   . Substituting Equation 16 into 

Equation 1, we have the following system of nonlinear 
ODEs: 
 

2 2'' (2 ) ' ( ) 0,k U i kp U aUV p q U                        (17) 

 
 
 
 

2 2 4 (4) 2 2( ) '' ( ) '' 0.k V k V bk U                                (18) 

 
Integrating Equation 18 twice and taking integration 
constants to be 0, the Equations 17 to 18 reduces to the 
following system: 

 
2 2'' (2 ) ' ( ) 0,k U i kp U aUV p q U                           (19) 

 
2 2 4 2 2( ) '' 0.k V k V bk U                                (20) 

 
Considering the homogeneous balance between the 
highest order derivatives and the nonlinear terms in 
Equations 19 and 20, we obtain N = M = 2. 
Consequently, Equations 19 and 20 have the formal 
solutions: 

 
2

0 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )U                        (21) 

 
2

0 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )V c c c d d                   (22) 

 

Where
0 1 2 1 2 0 1 2 1, , , , , , , ,c c c d     and 2d  are 

constants to be determined later satisfying 
2 2

2 2 0   , 

2 2

2 2 0c d  . There are three cases to be discussed as 

follows: 

 
 

Case 1: Hyperbolic function solutions ( 0  ) 

 

If 0  , substituting Equations 21 and 22 into Equations 

19 and 20 and using Equations 4 and 6, the left-hand 

sides are converted into polynomial in   and  . Setting 

each coefficient of this polynomial to 0, yields a system of 

algebraic equations in 0 1 2 1, , , ,    2 0, ,c  1 2 1, ,c c d , 

2d ,  ,  , , k , p and q  as follows: 

 
2 2 2

2 2 2 2 2

1

6 0,
a d

a c k
 

 
  

   


 

 

 2 2

2 1 1 2 2 1 1 2 2 1 22 2

1

2 (2 ) 2 6 0,i kp k a c a c a d a d k


        
  

         


 

 
2

2 2 2 2 26 0,a d k a c       

 

  

2
2 2 2 2

2 1 0 2 1 1 2 0 2 2 2

1

2 2

1 1 2 2 12 2

1

( ) (2 ) 8

(2 ) 2 0,

a d
p q i kp a c a c a c k

a d i kp k

 
       

  


       

  

        


      


 

 2 2 2
2 1 2 2 1 2 1 1 2 2 1 2 2

1

2
2 (2 ) 10 2 0,

a d
i kp a d a d k a c a c

 
        

  
         



 



 
 
 
 

 

2 2

1 2 0 1 1 0 1

2
2

1 2 2 1 22 2

1

( ) 2 (2 ) 2

6 0,

p q i kp a c a c k

a d a d k

       


   

  

      

   


 

 

   

 

2 2

0 2 1 1 1 2 1 1 2 0 2 1 2

2

1 2 2 1 22 2

1

3 5 ( ) (2 ) 2

2
6 0,

a d a d k a c a c p q i kp

a d a d k

            


   

  

            

    


 

 

   

  

2 2

1 2 2 1 0 1 1 1 0

2 2

1 1 2 2 12 2

1

4 (2 ) ( )

2
(2 ) 2 0,

k i kp a d p q a c

a d i kp k
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On solving the above algebraic equations using the 
Maple or Mathematica, we get the following results: 
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Where .k   

From Equations 5, 16, 21, 22 and 23, we deduce the 
traveling wave solutions of SB-system (Equation 1) as 
follows: 
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In particular, by setting 1 0A  and 2 0A   in Equations 

24 and 25, we have the kink and bell shaped solitary 
solutions 
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while, if 1 0A  and 2 0A  , then we have the anti-kink 

and anti-bell shaped  solitary solutions 
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where .k   

In this result, we deduce the traveling wave solution of 
SB-system (Equation 1) as follows: 
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In particular, by setting 1 0A  and 2 0A  in Equations 

31 and 32, we have the anti-kink and anti-bell shaped 
solitary solutions 
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Case 2: Trigonometric function solution ( 0  ) 

 

If 0  , substituting Equations 21 and 22 into Equations 

19 and 20 and using Equations 4 and 8, the left-hand 

sides are converted into polynomial in   and  . Setting 

each coefficient of this polynomial to 0, yields a system of 

algebraic equations in 0 1 2 1, , , ,    2 0, ,c  1 2 1, ,c c d , 

2d ,  ,  , , k , p and q  as follows: 
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On solving the above algebraic equations using the 
Maple or Mathematica, we get the following results: 
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Where .k   

From Equations 7, 16, 21, 22 and 35, we deduce the 
traveling wave solutions of SB-system (Equation 1) as 
follows: 
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sin( ) cos( )
2 2

k k
A Ak k k

v
ak k k

A A
k k

 
 


 

 

         
     
   

(37) 

 

In particular, by setting 1 0A  and 2 0A   in Equations 

36 and 37, we have the periodic solutions 
 

 2 2 2 2 2 2

4 42

3
( ) sec( ) tan( ) ,

2 2

i
k k k

u e
k kk a b


  

  
   
 
  


       (38) 
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 2 2 2 2
2

2 4

3
( ) sec ( ),

2

k k
v

ak k

 
 

 
                      (39) 

 

while, if 1 0A  and 2 0A  , then we have the periodic 

solutions 
 

 2 2 2 2 2 2

4 42

3
( ) csc( )cot( ) ,

2 2

i
k k k

u e
k kk a b


  

  
   
  
  

     (40) 

 

 2 2 2 2
2

2 4

3
( ) csc ( ),

2

k k
v

ak k

 
 

 
                    (41) 

 

where

2 2

2

2
, .

2 4

k
kx t x t

k k

 
  


      

 
 
Result 2 
 
Consider 
 

 

   

 

2 22 2 2

0 1 2 14 2

2 2 2 2 2
2

2 0 1 2 12

2 2
2 2

2

2 2

2 3
0, , , 0, , 0,

2 3
3 , , 0, , 0,

3 4 5
, , ,

2 4

kk k

k k a b a b

k k k
c c c d

a b a k a

k k
d p q

a k k


     

  


   


       

 
     

 
   

(42) 

 

Where .k   

In this result, we deduce the traveling wave solution of 
SB-system (Equation 1) as follows: 
 

   

 

2
2 2 2 2

2 2 2 2
1 24 4

2 2 2 2 2 2

1 24 4

2 2 2 2

2 2
1 24 4

2

22
2 2 2 2

1 24 4

cos( ) sin( )2 3
( )

sin( ) cos( )

cos( ) sin( )3

sin( ) cos( )

k k
A Ak k k k

u
k a b k a b k k

A A
k k

k k
A Ak k k

k a b
k k

A A
k k

 
  


 

 

 
  

 
 

          
     
  


  



   

  
 
 

,ie 








 

(43) 

 

   

 

2
2 2 2 2

2 2 2 2
1 24 4

2 2 2 2 2 2

1 24 4

2 2 2 2

2 2
1 24 4

2

22
2 2 2 2

1 24 4

cos( ) sin( )2 3
( )

sin( ) cos( )

cos( ) sin( )3
,

sin( ) cos( )

k k
A Ak k k k

v
ak ak k k

A A
k k

k k
A Ak k k

ak
k k

A A
k k

 
  


 

 

 
  

 
 

  
  

  
  

 
 

 
  

 
 
   

  
  
  

  (44) 
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In particular, by setting 
1 0A  and 

2 0A   in 

Equations 43 and 44, we have the periodic solutions 
 

 

 2 2 2 2

42

2 2 2 2

4 4

( ) 2 3tan( )

tan( ) sec( ) ,i

k k
u

kk a b

k k
e

k k



 
 

 
 

 
  



  
  

  

    (45) 

 

 2 2 2 2 2 2 2 2

2 4 4 4
( ) 2 3tan( ) tan( ) sec( ) ,

k k k k
v

ak k k k

   
   

     
    

    

          (46) 

 

while, if 1 0A  and 2 0A  , then we have the periodic 

solutions 
 

 2 2 2 2

42

2 2 2 2

4 4

( ) 2 3cot( )

cot( ) csc( ) ,i

k k
u

kk a b

k k
e

k k



 
 

 
 

 
  



  
  

  

  (47) 

 

 2 2 2 2 2 2 2 2

2 4 4 4
( ) 2 3cot( ) cot( ) csc( ) ,

k k k k
v

ak k k k

   
   

     
    

    

  (48) 

 

Where  

2 2

2

4 5
, .

2 4

k
kx t x t

k k

 
  


       

 
 

Case 3: Rational function solutions ( 0  ) 

 

If 0  , substituting Equations 21 and 22 into Equations 

19 and 20 and using Equations 4 and 10, the left-hand 

sides are converted into polynomial in   and  . Setting 

each coefficient of this polynomial to 0, yields a system of 

algebraic equations in 0 1 2 1, , , ,    2 0, ,c  1 2 1, ,c c d , 

2d ,  , , k , p and q  as follows: 

 

2 2 2
2 2 2 2

1 2

6 0,
2

a d
a c k

A A


 


   


 

 

 2 2

2 1 1 2 2 1 1 2 2 1 22

1 2

1
2 (2 ) 2 6 0,

2
i kp k a c a c a d a d k

A A
        


        


 

 
2

2 2 2 2 26 0,a d k a c       

 

  

2

2 1 0 2 1 1 2 0

2 2

1 1 2 2 12

1 2

( ) (2 )

1
(2 ) 2 0,

2

p q i kp a c a c a c

a d i kp k
A A

     

       


      

      

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2 1 2 2 1 2 1 1 2 2 1 2

1 2

2
2 (2 ) 10 2 0,

2

a d
i kp a d a d k a c a c

A A

 
        


         



 

 
2

1 0 1 1 0( ) 0,p q a c a c        

 

 

 

2 2

0 2 1 1 1 1 1 2 0 2 1 2

2

1 2 2 1 22

1 2

3 ( ) (2 ) 2

2
6 0,

2

a d a d k a c a c p q i kp

a d a d k
A A

          


   



          

   

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2

i kp a d p q a c

a d i kp k
A A

     


       



    

      


 

 
2

0 0 0( ) 0,a c p q      

 
2 2

4 2 2 2
2 2 2

1 2

6 0,
2
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k c bk

A A





  



 

 

 4 2 4 2

1 1 2 2 1 22

1 2

1
2 2 6 2 0,

2
k c bk k d bk

A A
    


   


 

 
2 4

2 2 22 6 0,bk k d     
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2
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
      


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2
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2
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A A

 
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
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A A


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
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
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2
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2
bk k d k c d bk

A A


     


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

 

 2 2 2 2

0 0 0.k c bk     

 
On solving the above algebraic equations using the 
Maple or Mathematica, we get the following results: 
 
 
Result 1 
 
Consider 

 

 2

0 1 2 1 2 0

2

1 2 1 2

4 16
0, , 0, 0, , 0, 0, ,

4

6 1
0, , 0, 0, , , .

2

qk
c

aa b

k
c c d d p q q k

a

     




        

       
 

(49) 



 
 
 
 

From Equations 9, 16, 21, 22 and 49, we deduce the 
traveling wave solutions of SB-system (Equation 1) as 
follows: 
 

2
2

1

1 2

6
( ) ,iAk

u e
A Aa b




 
   

 

                               (50) 

 

 
2

2

1

1 2

4 1 6
( ) ,

4

q Ak
v

a a A A




  
    

 

                     (51)  

 

Where 1
, .

2
kx t x qt        

 
 
Example 2 
 
The (2+1)-dimensional HNLS equation (Equation 2) 
 
Here, we study the (2+1)-dimensional HNLS Equation 2. 
To this end, we assume that the solution of Equation 2 
can be written as: 
 

( , , ) ( ) , , ,iu x y t W e x ay ct mx ny t               (52)  

 

where ( )W   is a real function of  and , , ,a c m n ,  

are constants to be determined. Substituting Equation 52 
into Equation 2, we obtain 
 

2 2 2 3( 1) '' 2 ( ) 2 0,c W n a c W W         
           (53) 

 

Where 
2 1c  . 

 

By balancing between ''W with 
3W in (53) we get

2 3 1N N N    .  Consequently, Equation 53 has 

the formal solution: 
 

0 1 1( ) ( ) ( ),W                                         (54)  

 

Where 0 1,  and 1  are constants to be determined later 

satisfying 
2 2

1 1 0   . There are three cases to be 

discussed as follows: 
 
 

Case 1: Hyperbolic function solutions ( 0  ) 

 

If 0  , substituting Equation 54 into Equation 53 and 

using Equations 4 and 6, the left-hand side of Equation 

53 becomes a polynomial in   and  . Setting the 

coefficients of this polynomial to be 0, yields a system of 

algebraic equations in 
0 1 1, , , , , , ,a c m n    ,  and as 

follows: 
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On solving the above algebraic equations using the 
Maple or Mathematica, we get the following results: 
 
 
Result 1 
 
Consider 
 

2

0 1 1

2 2

0, , 0, 1, 0, , , ,

1 1
( )(1 ) ( ),
2 2

c a a c c

n c a a c

       

  

         

    

      (55) 

 

Where 
2 1.c   

From Equations 5, 52, 54 and 55, we deduce the 
traveling wave solution of Equation 2 as follows: 
 

2 1 2

1 2

cosh( ) sinh( )
( , , ) ( 1) ,

sinh( ) cosh( )

iA A
u x y t c e

A A

   


   

   
         

     (56) 

 

In particular, by setting 1 0A  and 2 0A   in Equation 

56, we have the kink shaped solitary solution 
 

2( , , ) ( 1) tanh( ) ,iu x y t c e                                  (57) 

 

While, if 1 0A  and 2 0A  , then we have the anti-kink 

shaped solitary solution 
 

2( , , ) ( 1) coth( ) ,iu x y t c e                     (58) 
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Where 
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    (59) 

 

where 
2 1.c   

In this result, we deduce the traveling wave solution of 
Equation 2 as follows: 
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   



  
      

   
     
  

 
   

   
    
 

 (60) 

 

In particular, by setting 1 0A  , 2 0A   and 0   in 

Equation 60, we have the anti-kink and anti-bell shaped 
solitary solution 
 

 
2( 1)

( , , ) coth( ) csch( ) ,
2

ic
u x y t e 

   
 

       (61) 

 
Where 

  2 21 1 1
, (1 ) ( ) .

2 4 2
x ay c t a c x c a a c y t      

  
             

  

 

 
 

Case 2: Trigonometric function solution ( 0  ) 

 

If 0  , substituting Equation 54 into Equation 53 and 

using Equations 4 and 8, the left-hand side of Equation 

53 becomes a polynomial in   and  . Setting the 

coefficients of this polynomial to be 0, yields a system of 

algebraic equations in 0 1 1, , , , , , ,a c m n    ,  and

as follows: 
 

 
2

2 3 1 1
1 1 2 2

2

6
2 1 2 0,c

  
 

  
   


 

 
 
 
 

 
  

3 2
2 2 21

0 1 1 0 12 2 2
2 2

2
2

4
6 1 6 0,c

   
     

    
     
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3

2 2 1
1 1 1 2 2

2

2
6 2 1 0,c

 
  

  
    


 

 

 
2 2

2 2 2 2 1 1
1 0 1 1 2 2

2

6
( 2 ( ) ) 6 2 1 0,n a c c

  
      

  
        


 

 

 
2

2 1 1
1 0 1 1 2 2

2

12
3 1 12 0,c

  
    

  
    


 

 

 
 

  

3 2 2 3 2
2 2 2 2 1 1

1 0 1 1 2 2 2
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2
2
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1 0 12 2

2

8 2
( 2 ( ) ) 6 1

2
1 6 0,

n a c c

c

    
      

    


   

  

        


   


 

 

 
  

3 3 2
2 2 3 2 21

0 0 1 0 12 2 2
2 2

2
2

4
( 2 ( ) ) 2 1 6 0.n a c c

   
       

    
         



 

 

On solving the above algebraic equations using the 
Maple or Mathematica, we get the following results: 
 
 

Result 1 
 

Consider 
 

2

0 1 1

2 2

0, , 0, 1, 0, , , ,

1 1
( )(1 ) ( ),
2 2

c a a c c

n c a a c

       

  

         

    

   (62) 

 

Where 
2 1.c   

From Equations 7, 52, 54 and 62, we deduce the 
traveling wave solutions of Equations 2 as follows: 
 

2 1 2

1 2

cos( ) sin( )
( , , ) ( 1) ,

sin( ) cos( )

iA A
u x y t c e

A A

   


   

 
      

  (63) 

 

In particular, by setting 1 0A   and 2 0A  in Equation 

63, we have the periodic solution 
 

2( , , ) ( 1) tan( ) ,iu x y t c e                         (64) 

 

while, if 1 0A   and 2 0A  , then we have the periodic 

solution 
 

2( , , ) ( 1) cot( ) ,iu x y t c e                          (65) 



 
 
 
 
where

  2 21 1
, ( )(1 ) ( ) .

2 2
x ay c t a c x c a a c y t      

 
            

 

  

 
 

Result 2  
 

Consider 
 

  2 2 22
2

0 1 1

2 2

11
, , 0, , , ,

2 4

1 1 1
, , (1 ) ( ),

2 4 2

cc
a a

c c n c a a c

  
      



    

 
       

 
       

 

 (66) 

 

Where 
2 1.c   

In this result, we deduce the traveling wave solution of 
Equation 2 as follows: 
 

  

2

1 2

1 2

2 2 2

2

1 2

( 1) cos( ) sin( )
( , , )

2
sin( ) cos( )

1 1
,

4
sin( ) cos( )

i

c A A
u x y t

A A

c
e

A A



    


   



  

    


  
   

   
   
  

 
   

  
  
 

 (67) 

 

In particular, by setting 1 0A  , 2 0A   and 0  in 

Equation 67, we have the periodic solution 
 

 
2( 1)

( , , ) tan( ) sec( ) ,
2

ic
u x y t e 

   


               (68) 

 

while, if 1 0A  , 2 0A   and 0  , then we have the 

periodic solution 
 

 
2( 1)

( , , ) cot( ) csc( ) ,
2

ic
u x y t e 

   


               (69) 

 
Where

  2 21 1 1
, (1 ) ( ) .

2 4 2
x ay c t a c x c a a c y t      

  
             

  

 

 
 

Case 3: Rational function solutions ( 0  ) 

 

If 0  , substituting Equation 54 into Equation 53 and 

using Equations 4 and 10, the left-hand side of Equation 

53 becomes a polynomial in   and  . Setting the 

coefficients of this polynomial to be 0, yields a system of 

algebraic equations in 0 1 1, , , , , , ,a c m n     and   as 

follows: 
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 
2

2 3 1 1
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
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2 2 3

0 0( 2 ( ) ) 2 0.n a c          

 
On solving the above algebraic equations using the 
Maple or Mathematica, we get the following results: 
 
 
Result 1 
 
Consider 
 

2

0 1 1 1

2 2

0, 0, 0, 1, , , ,

1 1
(1 ) ( ),

2 2

A c a a c c

n c a a c

     

 

        

   

    (70) 

 

where 
2 1.c   

From Equations 9, 52, 54 and 70, we deduce the 
traveling wave solutions of Equation 2 as follows: 
 

2 1

1 2

( , , ) 1 ,iA
u x y t c e

A A





 
    

 
                  (71) 

 
Where

  2 21 1
, (1 ) ( ) .
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 
           

 
  

 
 
Result 2 
 
Consider 
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2 22
1 2

0 1 1

2 2

( 1)( 2 )1
, 0, , , ,

2 2

1 1
, , (1 ) ( ),

2 2

c A Ac
a a

c c n c a a c


    

   

 
      

     

 (72) 

 

Where 
2 2

1 21, 2 .c A A   

In this result, we deduce the traveling wave solution of 
Equation 2 as follows: 
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1 21
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c A AAc
u x y t

A A

e
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







 

 

     
  

   

 
  

   

 (73) 

 
where

  2 21 1
, (1 ) ( ) .

2 2
x ay c t a c x c a a c y t     

 
           

 

 

 
 
PHYSICAL EXPLANATIONS OF SOME OBTAINED 
SOLUTIONS 
 
The obtained solutions for the two equations (1) and (2) 
include the kink, anti-kink soliton solutions, bell and anti-
bell soliton solutions as well as periodic and rational 
solutions. The graphical representations of some of these 
solutions are plotted by taking suitable values of involved 
unknown parameters to visualize the mechanism of the 
original equations (Figures 1 to 6). 
 
 
CONCLUSIONS 
 

The two variable  ' 1,G
G G

-expansion method is used in 

this article to obtain new exact solutions of two nonlinear 
PDEs namely, the (1+1)-dimensional nonlinear 
Schrödinger-Boussinesq system and the (2+1)-
dimensional HNLS equation. These exact solutions are 
presented in terms of the hyperbolic, trigonometric and 

rational functions. As the two parameters  A1   and  A2   
takes special values, we obtain the solitary wave 
solutions. From Equations 3 and 14, we can deduce that 

the two variable  ' 1,G
G G

-expansion method reduces to 

the  'G
G

-expansion method. So the two variable 

 ' 1,G
G G

-expansion method is an extension of the  'G
G

-

expansion method. The used method in this paper is 

more effective and more general than the  'G
G

-

expansion method because it gives exact solutions in 
more general forms. In  summary,  the  advantage  of  the  

 
 
 
 

 
 

Figure 1. The plot of ( , )U x t  of Equation 33 when 

1, 2, 1, 1.k a b     

 
 

 

 
 

Figure 2. The plot of ( , )v x t  of Equation 34 when 

2, 3, 3.k a    

 
 
 

two variable  ' 1,G
G G

-expansion method over the  'G
G

-

expansion method is that the solutions obtained by using 



 
 
 
 

 
 

Figure 3. The plot of ( , )U x t of Equation 38 when 

2, 1, 1, 1.k a b      

 
 
 

 
 

Figure 4. The plot of ( , )v x t of Equation 39 when  2, 1, 1.k a    

 
 
 

the first method recover the solutions obtained by using 
the second one. On comparing our results obtained in 
this article with the well-know results obtained in Kilicman 
and Abazari (2012) and Fen (2012), we conclude that our 
results are new and not published elsewhere. 
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Figure 5. The plot of (0, , )W y t  of Equation 57 when 

1, 4, 2.c a      

 
 
 

 
 

Figure 6. The plot of (0, , )W y t of Equation 68 when 

1, 2, 1.c a     

 
 
 

Finally, all solutions obtained in this article have been 
checked with the Maple by putting them back into the 
original equations. 
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The assembly line is an important component of the automobile production process. The function of 
the assembly line is to produce different models of vehicles with minimum work in the process. For 
better performance, activities on the assembly line should be performed to minimise the process steps 
and achieve other objectives. This study develops a new dynamic sequencing method to improve 
activities on the assembly line and also an automated sequence-control system. Three methods, 
namely the Multi-Objectives Model, the Genetic Algorithm System and the Simulation Model, are 
integrated to enhance the efficiency of the assembly line by controlling the processing time within the 
workstations. The results show that the method was able to improve the working time performance and 
also increase throughputs. 
 
Key words: Processing time, assembly line, mathematical method, genetic algorithm system, simulation model. 

 
 
INTRODUCTION 
 
Body Shop (BS), Paint Shop (PS), Assembly Shop (AS) 
and Test Shop (TS) and other sub-assemblies, also 
called stations, have the function of feeding the main 
assembly. The production of automobiles in the AS is a 
typical example of the mixed-model production system 
(Wonjoon and Hyunoh, 1997). Figure 1 shows the 
assembly system of the automobile production system. In 
the figure, all the assembly plants have their own stations 
(namely S1, S2….Sn). The sub-assembly stations are also 
shown in the figure. 

In the automobile industry system, one of the areas 
under consideration is the Assembly Line Balancing 

Problem (ALBP) which distributes the total workload 
among manufacturing stages (Adham, 2012; Ali and 
Razman, 2011; Toshio et al., 1996). There were many 
researchers who studied the issues related to the ALBP 
and the Production Line System (PLS) in order to obtain 
the best solution (Razam and Ali, 2012; Minh and 
Soemon, 2008; Williams, 2007).  

The Hybrid Model (HM), combining the Multi-Objectives 
Model (MOM), the Genetic Algorithm System (GAS) and 
the Simulation Model (SM), is presented in this study. It is 
a new technique and one of the most powerful methods 
to obtain the best balance of the cycle. Many real-world
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Figure 1. Assembly line system (ALS). 

 
 
 
problems require an optimal solution that could be 
obtained by adopting the HM approach. The HM 
developed in this study is able to assist managers to 
have an optimal cycle time (CT), balancing the ALS and 
managing the production plan to know the capacity of the 
assembly line after solving the ALBP (Ali and Razman, 
2012; Amir and Farhad, 2006; Anand et al., 2012). 

The contribution of this study is to approach an 
integrated model (including the MOM and the GAS) to 
solve the queuing problem within the stations on the 
assembly line, with the SM to manage the capacity of the 
assembly line. Additionally, the integrated model can 
combine the unbalanced assembly line problem and the 
ratio of the production plan. As a result, the method will 
achieve the target by minimising unbalanced CT and 
maximising workload to achieve the production plan. This 
study focuses on the main problem of the production line 
which is balancing CT within the stations. The 
unbalancing problem occurs when not all stations are 
able to complete all tasks at the same time (Christian 
and Armin, 2009). As a result, it causes a congestion 
problem on the production line and the resources are 
underutilised. Figure 2 presents the ALBP which is 
unbalanced CT within the stations on the assembly line. 
 
 
METHODOLOGY 

 
Multi-objectives model (MOM) 

 
The MOM is formulated to create a balanced time within stations 
through to obtaining optimal balance within the stations. There are 
two goals of the MOM: (1) to minimise the queuing time within the 
stations; (2) to minimise the idle time within the stations. 
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Where: Q: total queuing time within the stations, QU: queuing 
between the stations, Id: total idle time within the stations, DT: idle 
time between the stations. 

The MOM aids management to achieve either the optimum 
solution (Razman and Ali, 2011; Razman and Ali, 2010). Figure 3 
shows the implementation of the MOM for the ALS. The MOM will 
reduce the queuing and the idle time to obtain the best balance, 
then the best solution for the PLS. 
 
 
GAS 

 
The GAS is formulated to create an advanced balance time within 
stations through shuffling of the tasks in order to obtain an optimum 

balance. The GAS will select the task that should be moved within 
stations according to the objectives (1) and (2). Figure 4 presents 
the model of moving tasks among the stations. In the figure, there 
are two categories of task movement: the first category is a 
movement (1) from station (1) towards the station (n) passing 
through all stations respectively. The second category is movement 
(2) from station (n) towards station (1) passing through all stations 
respectively. The aim is to find the best solution for these objects 
using the GAS. As seen, the solution should allow all points to be 

passed by choosing the closest path among them in one go. The 
task movement occurs after selection of the first task with a high CT 
from any station, which should be moved towards the next station 
which has a low CT and function as a final task. Otherwise, the 
GAS will select the final task with high CT from any station and 
move it towards the previous station with low CT and have it 
function as a first task. This formulation of GAS will be more 
realistic, that is, create an optimum balance of CT within stations. 
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Figure 2. Unbalanced CTs. 

 
 
 

 
 
Figure 3. Unbalancing on the assembly line. 

 
 
 
Genetic algorithm objectives  
 
The GAS approach in this study aims to achieve two goals: 

rebalancing CT within the stations for each shop, through task 
movement; and also redistributing the jobs among the workers to 
obtain the optimum solution. The GAS obtains the optimum balance 
(optimum solution) of the ALS with two objectives which are: 
 
(i) First goal: Moving the tasks among the stations. 
(ii) Second goal: After applying the MOM, if the ALS still has 
queuing issues, the GAS will redistribute the jobs to the workers in 
order to achieve the optimum balance.  

The formulas of the GAS are presented in Equations (3) and (4). 
These explain how the GAS achieves a time balance on the 
assembly line. 

 
𝐺𝑜𝑎𝑙1 = 𝐶𝑇𝑆1  ≈ 𝐶𝑇𝑆2  ≈ 𝐶𝑇𝑆3 ≈ 𝐶𝑇𝑆4  ≈, , , , ≈ 𝐶𝑇𝑆𝑛  

 

 

 

 

 

  (3) (1
st
 goal) 

  

𝐺𝑜𝑎𝑙2 = 𝑅𝐽𝑆1  ≈ 𝑅𝐽𝑆2  ≈ 𝑅𝐽𝑆3 ≈ 𝑅𝐽𝑆4  ≈, , ,, ≈ 𝑅𝐽𝑆𝑛  
 (4) (2

nd
 goal) 

 
Where: CTSi =CT for each station, RJSi = ratio of the jobs of each 
station. 
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Figure 4. Task movement among the stations. 

 
 
 

 
 
Figure 5. SM of ALS. 

 
 
 
To achieve goal 1, the GAS should move the tasks among stations 
until it gets the best CT balance. This goal corresponds to the first 
and second objectives of MOM (1, 2), that is, to obtain the optimum 
balance. 
 
 
Simulation model (SM) 

 
Simulation is a technique with which a real-world problem can be 
mimicked and modelled with the aid of computers. The SM provides 
analysis and allows users to perform ‘what-if’ analysis where users 
can test different strategies or policies and observe how the model 
behaves before implementing it in the real world. Besides that, the 
simulation also serves as a training and educational tool (Holst and 
Bolmsjo, 2001). 

In this study, the SM is developed using the ARENA simulation 
package. Figure 5 shows the SM of ALS. The chassis section in the 
ALS is modelled and inputs such as arrival time and processing 
time are incorporated into the model.  
 
 
Hybrid model (HM) 
 
HM flowchart 
 
The HM, applied to solve both problems, which are queued and idle 
time, also manages a new plan depending on the available total 
working time to obtain the best balancing by applying the MOM. 
The SM will create new plans depending on the efficiency of the 
cycle time. Figure 6 shows the flowchart of the HM. 
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Figure 6. HM flowchart. 

 
 
 
Procedure of HM 
 
Computer software helps to optimise the ALS by applying the MOM 
and GAS. MATLAB software is used to solve the system issues to 
obtain the optimum balanced CT of the ALS. The procedure is as 
follows: 
 
Procedure: solve the unbalanced CT of the assembly line. 
Input data: CT, task number, number of workers for each station, 
queuing and idle time. 

Output data: the optimum balancing of the ALS. 
Begin 
{ 
 Calculate the CT on the production line for each station 
  While i < total number of stations 
   Balance process time tasks 
  Move the tasks among the stations 
 i=i+1 

End 
Print the optimum balance 
} End 
Once the optimum balancing of ALS is calculated using the MOM, a 
SM is developed. The SM is constructed to test the maximum 
number of cars that can be produced if the ALS CT is balanced in 
order to optimise the capacity of the production line. 

 
 
MODEL RESULTS 

 
Balancing problems of the ALS 

 
CT is the time taken to complete all tasks at the stations 
of the shops. For a highly efficient ALS, the CT should be 
equal among the stations (Nai-Chieh and I-Ming, 2011).  
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Table 1. Variables of the chassis section. 
 

Stations CT seconds (L3) No. tasks (L2) Workers (L3) 

1 576 122 2 

2 593 116 2 

3 622 130 1 

4 627 125 2 

5 562 118 1 

6 620 127 1 

7 588 120 1 

Total 4,188 858 10 
 
 
 

Table 2. Queuing and idle time at the CS. 
 

No.  

station 

CT before applying 
the model 

CT after applying the 
model 

Queuing 
before 

Idle time 

before 

Queuing 

after 

Idle time 

after 

CS1 576 593 17 0 6 0 

CS2 593 599 29 0 0 0 

CS3 622 599 5 0 4 0 

CS4 627 603 0 65 0 1 

CS5 562 602 58 0 0 6 

CS6 620 596 0 32 0 0 

CS7 588 596 0 0 0 0 

 4,188 4,188 109 97 10 7 
 
 

 

Normally, it is a very challenging target to reach a 
balance of CT within the stations. An unbalanced CT is 
caused by the queuing problem on the assembly line. 
This study examined the chassis section which is one 
part of the assembly line. 
 
 
Chassis section (CS) 
 
The CS has seven stations. Its function is to assemble an 
engine, bellows, axle and other mechanical works. The 
total processing time in this section is 4,188 s. Table 1 
describes the operational aspects of this data. It shows 
that station 1 has a processing time of 576 s with 122 
tasks. Only two workers are involved at this station. Table 
2 shows the queuing time and the idle time before and 
after applying the MOM. The queuing and the idle time 
before applying the model were 109 and 97 s, 
respectively. After applying the HM, the queuing and 
idle time become 10 and 7 s, respectively. As a result, 
the model reduced time arising from the queuing problem 
by around 99 s (1.65 min), and 90 s (1.5 min) due to idle 
time. The total time saved is 189 s (3.15 min) in 
preparation of only one car. 

Figure 7 presents the CT station before and after 
applying the MOM and the GAS to the ALS. In the  figure, 

L1 represents the working CT before applying the model; 
L2 represents the best balancing within stations after 
applying the model. 
 
 
Simulation results 
 
The current assembly line operates for 7.5 h per day and 
produces 28 cars daily. The SM is used to test the 
maximum number of cars that can be produced if the 
assembly line operates according to the optimum CT 
calculated using the MOM. Table 3 shows the number of 
cars that can be produced daily. The simulation results 
reveal that by adopting the new balanced CT, the ALS 
can produce an additional four cars daily, given that the 
maximum number of operating hours of the ALS is 7.5 h. 
Producing more than 32 cars will require additional 
working hours. This finding serves as a guideline on how 
many additional cars can be produced daily without 
exceeding the current capacity and maximum duration. 
 
 
DISCUSSION  
 
The new method combines the MOM and the GAS with 
the SM to solve the unbalancing and planning
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Figure 7. CTs before applying, after applying the MOM and the GAS. 

 
 
 

Table 3. Number of cars produced and hours needed. 

 

Number of cars produced Hours 

20 5.69 

24 6.02 

28 6.36 

30 6.69 

32 7.03 

34 7.36 

36 7.53 

37 7.70 

 
 
 
problems in the ALS. This method was applied to the 
chassis section of the ALS to obtain the optimum 
balance and plan. The MOM the GAS saved 189 s in 
the chassis section. The total queuing before applying 
the MOM and the GAS was 109 s (1.81 min); it became 
10 s (0.16 min) after applying the MOM and GAS which 
saved 99 s (1.65 min) for preparation of one car. Also, 
the model reduced the idle time within the stations as 
well. It was 97 s (1.61 min) before applying the model 
and became 7 s (0.11 min) for preparation of one car. 
Therefore, the total time saved by using the MOM and 
the GAS is 189 s (3.15 min) for preparation of one car in 
respect to both issues of the queuing and the idle time. 
Besides minimising queuing and idle time, this study 
further enhanced the results by developing a SM to test 
the maximum number of cars that can be produced daily 
by the ALS if the balanced CTs are adopted. The 
results show that from the current number of 28 cars 
produced, the balanced ALS can produce a maximum of 

32 cars daily. The new technique is beneficial to all 
workshops and sections of the production line as it 
increases the capacity of the production line in 
automobile manufacture. 
 
 
Conclusion 
 
The ALS is very important for the automobile industry. 
The unbalancing variations within stations are difficult 
problems which affect efficiency of the assembly line. 
This study proposed a new technique to solve the 
problems, such as queuing and idle time within stations. 
The HM combines the MOM, the GAS and the SM to 
obtain the optimum solution and plan. As a result, the new 
technique is very important for enhancement of the 
efficiency of the assembly line. Moreover, the HM 
reduces the unbalanced time within the stations and 
increases production by four cars per day. 
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